END-SEMESTER EXAMINATION (MAY - 2018) SEMESTER - I / III (SESSION - 2017-18)

Subject Code: CS-0204

Duration: 3 hours

Subject: Theory of Computation.

Max. Marks: 100

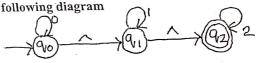
Instructions

All Questions are compulsory

- The Question paper consists of 2 sections Part A contains 10 questions of 2 marks each. Part B consists of 5 questions of 16 marks each.
- There is no overall choice. Only Part B question include internal choice.

PART - A

(2 * 10 = 20 Marks)


- 1. Define:
 - Finite Automaton(FA) I.
 - Transition diagram II.
- 2. What are the applications of automata theory?
- 3. Differentiate NFA and DFA
- 4. What is a regular expression?
- 5. Define a context free grammar
- 6. What is an ambiguous grammar?
- 7. Define Pushdown Automata?
- 8. When is a string accepted by a PDA?
- 9. Define Turing machine?
- 10. When we say a problem is decidable? Give an example of undecidable problem?

11. Construct the Minimum state automaton equivalent to the transition table given where initial state qo and final

State	a	b
	Q1	qo
q ₀	Q0	q 2
q1 q2	q ₃	q1
q2 q3	q ₃	qo
- q3 - q4	q ₃	q 5 .
qs qs	q ₆	q ₄
g	q ₅	q6
Q7 ·	q6	q ₃

OR

(a) Find equivalent NFA without € transitions for

(b) Construct a DFA with reduced states equivalent to the regular expression.

12. (a) Design CFG for $\Sigma = \{0, 1\}$ that generates the set of

15/5/2018(EYENING) LIBRARY COPY

OR

Convert the following grammar G into GNF

$$S \rightarrow XA \mid BB$$

$$B \rightarrow b \mid SB$$

$$X \rightarrow b$$

$$A \rightarrow a$$

3. Design a PDA which accepts the language

 $L = \{w \in \{a, b\}^* / w \text{ has the equal number of a's }$ and b's }

OR Design a PDA for the following language

$$\mathbf{L} = \{\mathbf{a}^n \ \mathbf{b}^n \colon n > 0\}$$

14. Design a TM that can accepts

$$L = \{0^n \ 1^n \ : n \ge 1 \ \}$$

(a) Explain individually classes F and NF (b) Explain the concept of Decidable and undecidable problem

OR

- (a) NP-Hardness and NP-Completeness
- (b) Recursive and Recursively enumerable languages